The realization space is [1 x1^2 + x1 1 1 0 1 0 x1^2 + x1 - 1 x1^4 + 2*x1^3 - x1 0 x1^2 + x1 - 1] [1 x1^2 0 0 1 x1 0 x1^2 + x1 - 1 x1^4 + x1^3 - x1^2 x1^2 + x1 - 1 x1^3 + x1^2 - x1] [0 x1^2 + x1 x1 + 1 0 0 x1 + 1 1 x1^2 + x1 x1^4 + 2*x1^3 + x1^2 x1^2 + 2*x1 + 1 x1^3 + x1^2] in the multivariate polynomial ring in 1 variable over ZZ within the vanishing set of the ideal Ideal (-2*x1^16 - 9*x1^15 - 11*x1^14 + 6*x1^13 + 21*x1^12 + 8*x1^11 - 9*x1^10 - 6*x1^9 + x1^8 + x1^7) avoiding the zero loci of the polynomials RingElem[x1 + 1, x1, x1^2 + 2*x1 - 1, x1 - 1, x1^2 + x1 - 1, x1 + 2, x1^3 - x1 + 1, x1^3 + x1^2 - 2*x1 + 1, x1^3 + x1^2 - 1]